

Multi-Modal Biometric Approaches to Anti-Spoofing

Qinghan Xiao

Defence R&D Canada - Ottawa

March 31, 2005

Outline

- Authentication vs. E-Authentication
 - Locally controlled environment
 - Remotely open environment
- Spoofing
 - Steal a biometric sample
 - Create a fake artefact
- Anti-Spoofing
 - Liveness detection
 - Multi-modal biometric fusion

User Authentication

Authentication can be divided into four categories

- Local
 - supervised
 - unsupervised
- Remote
 - supervised
 - unsupervised

Local Authentication

- Authentication performed within a small group
 - Each user has a relatively fixed access point
- Authentication located in the trusted environment
 - Locally in an office environment
 - LAN access is controlled

E-Authentication

- E-authentication is the key to success e-government.
 - Ensure that the government transacts business with the right person
 - Allow users to trust the security of the information provided
 - Reassure users that their privacy will be protected
- New Challenge
 - Authenticate the users from remote locations
 - Network is opened to every one

Authentication Factors

Any technology can be broken by some one, in some way, at some time, with some efforts.

Solutions

Authentication without Biometrics

If I know the password Information no one knows I am a dog! Assurance

Authentication with Biometrics

Oops!
Need Biometrics ???

Spoofing Problem

- Fingerprint sensor can be attacked by
 - Recovering latent fingerprint from sensor window,
 - Using residual prints
 - Creating fake fingers with gelatine or silicon rubber to fool the sensor
- Face Recognition can be attacked by
 - Stealing face photo
 - Recording facial video
 - Creating 3D face mask

Spoofing: Easy to still a biometric sample

A fingerprint may be left on a clean, smooth surface

The problem is to make it visible

Fingerprint Image Captured

There it is!!!

A digital camera can be used to take the fingerprint image. The image can then be edited by image processing software...

Spoofing: Easy to create an artefact

Use cheap materials to fool fingerprint sensor

Press live finger against free molding plastic

Get a mold

Pour the liquid into the mold

The gummy finger

Attack fingerprint sensor

Defence R&D Canada – Ottawa • R & D pour la défense Canada – Ottawa

Anti-Spoofing Techniques

- Liveness Detection
 - Fingerprint
 - > Temperature, Heartbeat, Finger bone
 - > LightPrint
 - Face
 - > Eye blink
 - > Fourier spectra analysis
- Multi-Modal Biometrics

DRDC's Research on Multi-Modal Biometric System

- Biometric Fusion Demo System
 - Different fingerprint sensors
 - Different biometric technologies

- Research on Multi-Modal Biometric Fusion
 - Fusion of independent modalities
 - Fusion of associated modalities

Biometric Fusion Demo System

Defence R&D Canada - Ottawa • R & D pour la défense Canada - Ottawa

Multi-Modal Biometric Fusion

Fusion tries to increase the value of information content. Actually, it tries to turn the equality into an inequality, making 1+1=2 into $1+1 \ge 2$ **Templates** Confidence Feature Decision Accept Match Decision Decision Fusion **Fusion Fusion** Reject Accept Reject Reject Accept **Biometric** Feature Extractor **Decision II** Sensor II & Match II

Templates

Independent Inputs

Associated (Dependent) Inputs

Defence R&D Canada – Ottawa • R & D pour la défense Canada – Ottawa

Decision Making Based on Dependent vs. Independent Information

Expert 1

Expert 100

Buy Stock of Network
Company A

Manager of
Marketing and Sales

Director of Wireless Network

Director of Optical Network

Do not buy
Stock of
Network
Company A

ada – Ottawa 🔹 R & D pour la défense Canada – Ottawa

Is It Me? based on independent mod

— based on independent modalities

RD

It is Still Me!

— based on associated modalities

Defence R&D Canada – Ottawa • R & D pour la défense Canada – Ottawa

Conclusion

- Using biometrics can enhance the security level of e-authentication
- Spoofing is a major vulnerability
- Several anti-spoofing technologies are under development
- Multi-modal biometric fusion is a potential solution
- Fusion on associated biometric modalities might be a better solution because the sensor fusion can be performed with rich information obtained at an early stage

Acknowledgement

The author would like to thank Dr. Mark McIntyre and Dr. Karim Dahel for their comments and suggestions, and Mr. Matthew Kellett for his careful corrections and editing.

References

- [1] T. Matsumoto, H. Matsumoto, K. Yamada and S. Hoshino, "Impact of artificial gummy fingers on fingerprint systems," *Proc. of SPIE Vol. #4677*, Optical Security and Counterfeit Deterrence Techniques IV, 2002.
- [2] A. Ross, A. K. Jain, and J. Qian, "Information fusion in biometrics," in *Proc. AVBPA'01*, Halmstad, Sweden, pp. 354-359, June 2001.

DEFENCE DÉFENSE